
Evaluation of Sparse LU Factorization and

Triangular Solution on Multicore Platforms⋆

Xiaoye S. Li

Lawrence Berkeley National Laboratory, MS 50F-1650,
One Cyclotron Road, Berkeley, CA 94720, USA.

Tel: (510) 486-6684. Fax: (510) 486-5812, Email: xsli@lbl.gov.

Abstract. The Chip Multiprocessor (CMP) will be the basic build-
ing block for computer systems ranging from laptops to supercomput-
ers. New software developments at all levels are needed to fully utilize
these systems. In this work, we evaluate performance of different high-
performance sparse LU factorization and triangular solution algorithms
on several representative multicore machines. We include both pthreads
and MPI implementations in this study, and found that the pthreads im-
plementation consistently delivers good performance and a left-looking
algorithm is usually superior.

1 Introduction

The Chip Multiprocessor (CMP) systems will be the basic building blocks for
computers ranging from laptops to supercomputers. Compared to the super-
scalar microprocessors exploiting high degree of instruction level parallelism,
the CMP designs represent a paradigm shift that strikes better trade-offs be-
tween performance (parallelism) and energy efficiency. In the case of multicore
architecture, high performance is achieved by replicating the execution units on
a single die while keeping the clock rate (hence power consumption) relatively
low. In the case of multithreaded architecture, high throughput is achieved by
providing multiple sets of hardware thread contexts for each FPU and simultane-
ously executing multiple streams of instructions without relying on speculation.
Multithreading can effectively hide instruction and cache latency. In theory, the
CMPs can often be programmed the same way as the conventional SMPs, but
the CMPs have lower memory bandwidth and abundance of fine-grained par-
allelism. Given the diversity of CMP designs, it is necessary, albeit difficult, to
develop new software strategies at the system level as well as the application
level in order to fully utilize the hardware resources.

In this paper, we study several kernel algorithms associated with sparse direct
solvers on a couple of leading CMP systems. Direct solvers based on matrix
factorizations are among the most reliable methods or preconditioners for solving

⋆ This research was supported by the Director, Office of Science, Office of Advanced
Scientific Computing Research, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

sparse linear and eigen systems. They are often the computational bottlenecks
in large-scale computer modeling codes. Over the past decade or so, we have
been developing new algorithms to exploit advanced high-performance, large-
scale parallel computers. Our algorithm research has led to the software package
called SuperLU [4, 7], which is widely used in research and industry.

Previously, Williams et al. [14] performed extensive study and optimization
of sparse matrix-vector multiply (SpMV) on several leading CMP systems. In
SpMV, the matrix A needs to be read only once, hence the ratio of flops to
memory accesses is O(1). The operation is largely memory-bound, since there is
hardly any reuse, They develoepd various blocking strategies exploiting different
hardware components, including thread blocking, register blocking, cache and
local store blocking, and TLB blocking. In contrast, the factorization algorithm
need to access the matrix A, the L and U factors multiple times, which exhibit
higher reuse. But the ratio of flops to memory accesses changes throughout
the elimination process. In early stages of elimination, the factors are sparser
and workload is memory-bound. Whereas in later stages, the factors are denser;
level 3 BLAS are appropriate and hence the workload is compute-bound. The
change of arithmetic density makes it harder to develop uniform strategies for
performance optimization.

Our goal of this study is two-fold. Firstly, we would like to evaluate per-
formance of the existing implementations on the new CMP architectures, and
secondly, we would like to identify the inefficiencies in the algorithms and/or
implementations and the ways to improve them for the new architectures.

2 Experimental Machines

Our testing systems include an Intel Colvertown, a Sun VictoriaFalls, and an
IBM Power5. The last one contains a conventional SMP node.

The Intel Colvertown consists of two sockets, each with two pairs of dual-core
Xeon chips (Core2Duo), with total eight processors (Dell PowerEdge 1950 dual-
socket). Each core runs at 2.33 GHz with a peak performance of 9.3 Gflops (4
flops per cycle), and has a private 32 KB L1 cache. Each chip (two cores) share a
4 MB L2 cache. Each socket has access to a Front Side Bus (FSB) delivering 10.6
GB/s. The two independent FSBs are connected to the memory controller which
interfaces to the DRAM channels, delivering 21.3 GB/s read memory bandwidth
and 10.6 GB/s write bandwidth.

The dual-chip Sun VictoriaFalls contains 16 SPARCv9 cores, in which each
CMP is a Niagara2 chip with 8 cores. Each core runs at 1.16 GHz with a peak
performance of 1.16 Gflops, and has a private 8 KB L1 cache. All eight cores
share a 4 MB L2 cache. In addition, each core supports eight hardware threads,
and the entire dual-chip system provides a total of 128 threads. The two sockets
are interconnected via External Coherence Hubs (ECH). There are altogether 8
FBDIMM memory channels, delivering the aggregate DRAM bandwidth of 42.6
GB/s for read and 21.3 GB/s for write.

The IBM p575 Power5 is a scalable distributed memory HPC system con-
sisting of conventional SMP nodes. The entire system (bassi at NERSC) has 111
compute nodes, each of which has 8 Power5 processors running at 1.9 GHz and
has a shared memory pool of 32 GBytes. Each processor has a peak performance
of 7.6 GFlops (4 flops per cycle), and has a private 32 KB L1 cache. We only
use one SMP node in this study.

Table 1 summarizes the key architectural features of the three systems used
in this study. Figure 1 shows the simplified block diagrams of the two CMP
systems. The sources come from [11, 12, 14].

Several characteristics in Table 1 are worth noting. Compared to the IBM
SMP node, the cores-to-DRAM bandwidths are considerably lower on the mul-
ticore systems. In addition, the write bandwidth on both multicore systems is
only half of the read bandwidth. The byte-per-flop ratio shows the balance of
the memory bandwidth versus floating-point speed, with larger ratio indicating
higher bandwidth relative to core speed. The CMP systems are clearly worse
than conventional SMPs in this regard, implying that algorithms demanding
larger memory bandwidth will be penalized in performance. The conventional
SMPs usually have more complex designs and consume more power, see the last
line in the table. The quoted number for p575 was measured while running a
full computational workload, which is much lower than the manufacturer’s peak
power rating [12].

Table 1. Summary of the experimental machines.

Systems Intel Colvertown Sun VictoriaFalls IBM Power5 (575)

Core type superscalar (4) multithreaded (8) superscalar (4)

Clock (GHz) 2.3 1.16 1.9
L1 Dcache 32 KB 8 KB 32 KB
DP Gflops 9.3 1.16 7.6

Sockets 2 2 8

cores/socket 4 8 1

L2 cache 4 MB/2-cores 4 MB/socket 1.92 MB /core
(16 MB) (8 MB) (32 MB L3$/node)

DP Gflops 74.7 18.7 60.8

DRAM GB/s read 21.3 42.6 200
write 10.6 21.3 –

Byte/flop ratio 0.29 0.44 3.29

Power/socket 160 84 500
(Watts) (max) (max) (measured [12])

3 Overview of the Algorithms and Implementations

Over the years, we have been deveoping the SuperLU suite of libraries, with dif-
ferent variants of sparse Gaussian elimination targeted for shared or distributed

Fig. 1. High level block diagrams of Intel Clovertown (left) and Sun VictoriaFalls
(right).

memory high performance machines [7]. Below, we briefly summarize the algo-
rithmic and implementational features of the two variants used in this study.

3.1 Factorization in SuperLU MT using Pthreads or OpenMP

The initial target platforms of SuperLU MT were the SMPs of modest size (e.g.,
32 processors). It was first developed with Pthreads, and recently, we have added
OpenMP support. The earlier tests on a number of commercially popular SMPs,
such as Sun, DEC Alpha, SGI Origin, and Cray C90/J90, demonstrated excellent
speedups [3, 6]. Pleasantly, we will show that this code is equally suitable for
the modern multicore machines. The algorithmic features and parallelization
techniques are outlined below:

– Use panel-based left-looking factorization, with partial pivoting and possibly
with diagonal preference to better preserve sparsity. Use supernode-panel
update kernel to effectively use Level 3 BLAS.

– Use an asychronous and barrier-free dynamic algorithm to schedule both
coarse-grain and fine-grain parallel tasks to achieve a high level of concur-
rency. A globally shared task queue is used to store the ready panels in the
column elimination tree, and whenever a thread becomes free, it obtains a
ready panel from the task queue. The coarse-grain task is to factorize the
independent panels in the disjoint subtrees, while the fine-grain task is to
update panels by previously computed supernodes. The scheduler facilitates
the smooth transition between the two types of tasks, and maintains load
balance dynamically.

Figure 2 illustrates the left-looking factorization scheme, and the dynamic
scheduling method using the elimination tree.

3.2 Factorization in SuperLU DIST using MPI

The target platforms of this code are the massively parallel distributed memory
computers [8]. Previously, we tested this code on a number of HPC platforms,
including Cray T3E, IBM SP, and various Linux clusters. Good scalability was

Fig. 2. Panel-based left-looking algorithm in superlumt.

demonstrated up to one thousand processors. In order to address the scalability
issues, the parallel algorithm is significantly different from that in SuperLU MT.
The main differences are in pivoting strategy and matrix distribution, which are
summarized below.

– Use block-based right-looking factorization, which comprises abundance of
parallelism during the block outer-product updates to the trailing subma-
trices. According to the supernode partition, perform a two-dimensional
(nonuniform) block-cyclic matrix-to-processor mapping. Use the elimination
DAGs to identify task and block dependencies, and a look-ahead mechanism
to better overlap communication with computation and shorten the critical
path.

– Before factorization, pre-permute the rows of the matrix so that the diagonal
has entries of large magnitude, using a weighted bipartite matching algorithm
from MC64 [5]. During factorization, allow single precision perturbation to
the small diagonal entries.

Figure 3 illustrates the 2D block-cyclic partition and distribution for a sparse
matrix.

Fig. 3. Block-based right-looking algorithm in SuperLU DIST.

3.3 A note on SuperLU MT — symmetric mode

In order to conduct direct comparision between SuperLU MT and SuperLU DIST,
we have added a new algorithmic choice for SuperLU MT, which is called sym-

metric mode. As is known, with partial pivoting (SuperLU MT), it is better to use
AT A-based column ordering strategy to preserve sparsity, since pattern-wise,
the Cholesky factor of AT A upper bounds the LU factors in the decomposition
PA = LU , for any row permutation P . However, in the case of satic pivoting
where pivots are selected before hand (SuperLU DIST), no row interchanges are
made during factorization, then the AT A-based upper bound becomes too loose.
Therefore, we can use a tighter upper bound based on A + AT . The difference
in the amount of fill using an AT A-based sparsity ordering or an (A + AT)-
based one can be more than a factor of two. The new symmetric mode option in
SuperLU MT contains an algorithm that is similar to the one in SuperLU DIST —
it uses MC64 to perform static numerical pivoting, an (A+AT)-based symmetric
sparsity ordering, and single precision diagonal perturbations when needed.

All our experimental results used the symmetric mode in SuperLU MT. Thus,
the amount of fill and number of floating-point operations are roughly the same
with both solvers.

3.4 Triangular solution in SuperLU DIST

The triangular solution phase in SuperLU MT is not yet parallel, therefore we will
evaluate only the parallel algorithm in SuperLU DIST. In Lx = b, where L is a
lower triangular matrix, the i-th solution component is computed as

xi =
bi −

∑i−1
j=1 Lij · xj

Lii

.

Therefore, computation of xi needs some or all of the previous solution com-
ponents xj , j < i, depending on the sparsity pattern of the i-th row of L. This
sequentiality often poses scaling hurdle for a parallel algorithm. Another hurdle
to achieve good performance is the much lower arithmetic density as measured
by flops per byte of DRAM access or communication, compared to factorization.

In the current implementation of SuperLU DIST, the parallel triangular al-
gorithm uses the same 2D block-cyclic distribution as used in the factorization
phase. Figure 4 illustrate such a distribution and the solution process. The pro-
cesses owning the diagonal blocks (called diagonal processes) are responsible for
computing the corresponding blocks of the x components. When xj is needed in
Lij · xj , and the owners of xj and Lij are different, xj ’s processor needs to send
it to the processor of Lij , see ©1 in Figure 4. In case of ©2 , no communication is
needed because both xj and Lij reside on the same processor, i.e. processor 1.
After receiving the needed xj entries, each processor proceeds with local sum-
mation, i.e., step ©3 in Figure 4. Finally, the local sums are sent to the diagonal
processor which performs the division, see ©4 in the figure.

Fig. 4. Block-based triangular solution.

3.5 Entire solvers

Since the numerical pivoting methods are different in the two solvers — par-
tial pivoting in SuperLU MT and static pivoting in SuperLU DIST, the high level
structure of the two codes are different. In case of partial pivoting, the fills are
generated dynamically, so the symbolic factorization step cannot be separated
from numerical factorization. Whereas with static pivoting, we can separate sym-
bolic and numerical factorization steps. Figure 5 summarizes the major steps of
the two solvers and highlights the differences between them.

SuperLU MT

1. Sparsity ordering
2. Factorization ... interleaveing:

2.1) partial pivoting
2.2) symbolic factorization
2.3) numerical factorization (BLAS 2.5)

3. Triangular solution

SuperLU DIST

1. Static pivoting
2. Sparsity ordering
3. Symbolic factorization
4. Numerical factorization (BLAS 3)
5. Triangular solution

Fig. 5. Major steps in the entire solvers.

4 Experimental results

Table 2 presents the characteristics of our benchmarking matrices, which are
available from the University of Florida Sparse Matrix Collection [2]. In the
following subsections, we will present the parallel runtimes and analysis. We
benchmarked the Pthreads version of SuperLU MT, and SuperLU DIST using
MPICH [9].

Table 2. Properties of the test matrices. Minimum degree algorithm was applied to
the structure of |A|+ |A|T . “fill-ratio” denotes the ratio of number of nonzeros in L+U

over that in A; “Mean S-node” refers to an average number of columns in a supernode.

application dimension nonzeros in A fill-ratio Mean S-node

g7jac200 economic model 59,310 837,936 40.2 1.9
stomach duodenum model 213,360 3,021,648 45.4 4.0
torso1 2D model of torso 116,158 8,516,500 3.1 4.0
twotone nonlinear anal. circuit 120,750 1,224,224 9.3 2.3

4.1 Characterization from hardware performance counters

Given that the memory system performance plays increasingly significant role
on the CMP architectures and with the sparse matrix algorithms, it would be
more relevant to quantify the memory access patterns of the different algorithms
than to count the flops alone. For simpler kernels like SpMV, it is possible to
count manually. For complex codes, we need to resort to performance analysis
tools.

The first tool we used is PAPI [10] which provides an API to access ma-
chines’ hardware counters. As a first cut, we examine the load and store in-
struction counts, which are independent of the cache memory organization. Ta-
ble 3 compares the counts of the left-looking (SuperLU MT) and right-looking
(SuperLU DIST) factorization algorithms. It is clear that right-looking algorithm
incurs many more load and store instructions, typically an order of magnitude
more.

Table 3. Factorization load and store instruction counts (billions), reported by PAPI.

LOAD STORE

SuperLU MT SuperLU DIST SuperLU MT SuperLU DIST

g7jac200 1.2 27.7 0.3 8.2

stomach 0.8 52.0 0.3 10.8

torso1 9.1 17.9 2.8 4.5

twotone 1.2 18.6 0.2 8.4

Although the load/store instruction count indicates the superiority of the
left-looking algorithm in the sense of program’s static behavior, we are also
interested in the temporal behavior of the codes while running on an actual
machine. Unfortunately, the two multicore machines do not yet have proper
PAPI support for such study. So we used the CrayPat performance tool provided
on the Cray XT systems [1]. CrayPat uses PAPI’s counters to collect raw data,
and then computes a variety of derived quantities which are easy to understand.
The machine we used is the Cray XT4 installed at NERSC. Each node consists
of a 2.6 GHz dual-core AMD Opteron processor, sharing 4 GBytes of memory.
Each core has a 64KB L1 data cache of and a 1MB L2 cache. The L2 cache is

a victim cache which holds only the cache lines evicted from L1, whereas most
data loaded from memory go directly to L1. We used only one core to run the
codes and collected data shown in Table 4, and the data are for the entire solvers.
We report two metrics: “Mem-to-D1” measures the amount of data transferred
between memory and L1 data cache, and “L2-to-Mem” measures the data traffic
between L2 and memory. In both metrics, we see that SuperLU DIST requires
considerably larger amount of data transfer.

Table 4. The solvers’ memory traffic (billion bytes) reported by CrayPat.

Mem-to-D1 L2-to-Mem

SuperLU MT SuperLU DIST SuperLU MT SuperLU DIST

g7jac200 10.7 17.5 3.9 15.1

stomach 25.1 24.9 16.0 16.3

torso1 3.0 7.4 4.7 11.6

twotone 1.9 7.8 1.2 7.0

Lastly, we examine the flop-to-load (store) ratio in the triangular soution
phase. We compare the metric for the two distinct stages of the solver, one
is “ordering + factor” and the other is “tri-solve”. In Table 5, we report the
respective ratios of flop-to-load and flop-to-store. As can be seen, in both metrics,
the triangular solution phase has much smaller flop density, sometimes can be
more than an order of mangnitude lower than the other part of the solver.

Table 5. Ratio of flops over load or store instructions in the triangular solution of
SuperLU DIST, compared with the rest of the program.

LOAD STORE

ordering + factor tri-solve ordering + factor tri-solve
g7jac200 0.86 0.14 2.89 0.24

stomach 1.35 0.24 6.49 0.47

torso1 0.75 0.21 2.95 0.35

twotone 0.30 0.06 0.67 0.09

4.2 Runtime

In the factorization codes of both solvers, the BLAS routines could take more
than 30-40% of the time. Therefore the BLAS speed is a key performance bound.
In sparse codes, the matrix size for BLAS calls is usually small. The kernel
in SuperLU MT is “BLAS 2.5”, where we perform multiple DGEMV calls with
different vectors while keeping the matrix in cache. Therefore, we usually keep
the matrix size bounded by 200 × 100. The kernel in SuperLU DIST is BLAS 3

(mostly DGEMM). In order to maintain good load balance, we use even smaller
block sizes, such as 50×50. In Figure 6, we plot the performance (Gflops rate) of
DGEMV and DGEMM on Clovertown and VictoriaFalls. In each case, we used
the vendor’s high performance mathematical libraries — Intel’s MKL and Sun’s
SunPerf.

Recall that each core processor of VictoriaFalls is hardware-multithreaded.
But without explicit parallelization (e.g., threading) at the software level, DGEMM
only achieves less than one-third of the peak performance. That is, a single
threaded program is incapable of fully utilizing the resources provided by a mul-
tithreading architecture.

0 200 400 600 800 1000
0

2

4

6

8

10

Dimension

G
flo

ps

Intel Clovertown (MKL)

dgemm−MKL
dgemv−MKL

0 200 400 600 800 1000
0

0.5

1

1.5

Dimension

G
flo

ps

Sun VictoriaFalls (sunperf)

peak 1.16 Gflops

dgemm
dgemv

Fig. 6. BLAS performance on Intel Clovertown (left) and Sun VictoriaFalls (right).
The top dashed line shows the core’s peak performance.

Table 6 shows the parallel factorization times of the two solvers on Intel
Clovertown. For fair comparison, the time includes both symbolic and numerical

factorization, because it is not possible to separate these two steps in SuperLU MT,

see Figure 5.
First we note that MPICH can be configured with either ch shmem device for

shared memory processors, or ch p4 device for communication through sockets
on distributed memory machines. We first used the default ch p4 configuration
on the Clovertown cluster, and found that the code slowed down significantly
beyond two or four cores. After we switched to ch shmem setup, we obtained
respectable speedup. Therefore, for a large distributed system comprising many-
core chips, it is imperative to be able to configure MPICH in a hybrid device
mode — ch shmemmode within socket and ch p4 mode across sockets. Currently,
the hybrid mode is not avaialbe.

Secondly, we examine the single core performance. We would expect that
SuperLU DIST outperforms SuperLU MT, because the former uses BLAS 3 whereas
the latter uses only BLAS 2.5. We see that this is true only with two matrices,
g7jac200 and stomach, which have relatively denser L and U factors (the fill ra-

tios are over 40, see Table 2), and hence BLAS 3 plays a larger role. For sparser
problems, the algorithms are memory-bound. We believe the worse performance
of SuperLU DIST is mainly due to more memory traffic of the right-looking al-
gorithm, especially more memory write operations, see the measures presented
in Section 4.1.

Thirdly, we examine the speedups of the two codes. The last column of Ta-
ble 6 shows the speedup obtained when creating eight threads or MPI tasks.
The best speedup is 4.3 and is less than what we observed on conventional SMP
processors [3]. After performing code profiling, we found that the overhead of the
scheduling algorithm using the shared task queue and the synchronization cost
using mutexes (locks) are quite small. Further study is needed to understand
where the time goes.

In addition, SuperLU MT usually achieves more speedup than SuperLU DIST.
This can be seen in the row “speedup ratio (MT/ DIST)” associated with each
matrix. In some cases, SuperLU MT achieves a factor of two more speedup than
SuperLU DIST.

Table 6. Factorization time in seconds on Intel Clovertown.

matrix threads or tasks 1 2 4 8 speedup

g7jac200 SuperLU MT 32.78 17.91 12.41 10.60 3.1
SuperLU DIST ch shmem 28.10 15.95 11.06 7.57 3.9

ch p4 28.62 22.98 56.31 62.39
speedup ratio (MT/ DIST) 1.00 1.03 1.01 0.80

stomach SuperLU MT 64.38 37.15 20.39 17.24 3.7
SuperLU DIST ch shmem 43.45 25.91 15.81 13.64 3.4

ch p4 44.28 27.84 210.99 264.58
speedup ratio (MT/ DIST) 1.00 0.99 1.10 1.10

torso1 SuperLU MT 9.43 4.92 2.87 2.20 4.3
SuperLU DIST ch shmem 9.43 5.83 4.55 4.76 2.2

ch p4 9.62 7.23 54.77 76.32
speedup ratio (MT/ DIST) 1.00 1.12 1.49 1.99

twotone SuperLU MT 6.80 4.05 2.32 1.83 3.9
SuperLU DIST ch shmem 18.08 10.17 7.55 7.21 2.1

ch p4 18.34 12.19 47.30 60.99
speedup ratio (MT/ DIST) 1.00 0.95 2.26 1.86

Table 7 shows the parallel factorization times on the Sun VictoriaFalls. Recall
that this system has 16 eight-way harware-threaded cores, and altogether we
can have up to 128 threads. The single-thread performance of SuperLU DIST is
usually better than that with SuperLU MT. This is probably because the machine
has a higher byte-to-flop ratio (see Table 1) compared to Clovertown, hence it
does not penalize an algorithm that is memory-bandwidth demanding, such as
the right-looking algorithm in SuperLU DIST.

However, the coarse-grain task parallelism supported by MPI programming
does not match the fine-grain multithreading architecture — MPICH often

crashes when more than 16 tasks are generated. The Pthreads programming
is much more robust, and SuperLU MT can effectively use 64 threads. Similar
to Clovertown, SuperLU MT usually achieves more speedup than SuperLU DIST.
This can be seen in the row “speedup ratio (MT/ DIST)” associated with each
matrix. In some case, SuperLU MT achieves a factor of 2 more speedup than
SuperLU DIST.

We see that SuperLU MT achieves nearly perfect speedups for the first four
to eight threads. This may be related to the Sun Solaris’ round-robin scheduling
policy which schedules multisocket first, then multicore, then multithreads [13].
With this order, the first few threads are spread across different sockets, and do
not have much memory bus contention.

Table 7. Factorization time in seconds on Sun VictoriaFalls. “f” indicates that an MPI
failure occurred.

matrix threads or tasks 1 2 4 8 16 32 64 128

g7jac200 SuperLU MT 480.84 244.24 126.16 68.93 40.22 28.47 23.95 24.80
SuperLU DIST 283.44 153.18 83.09 49.20 31.70 f f f
speedup ratio (MT/ DIST) 1.00 1.06 1.09 1.15 1.24

stomach SuperLU MT 1212.97 620.58 319.85 168.04 90.01 56.51 53.54 62.37
SuperLU DIST 598.49 329.28 183.90 116.22 85.56 f f f
speedup ratio (MT/ DIST) 1.00 1.06 1.13 1.33 1.79

torso1 SuperLU MT 201.05 102.09 52.51 27.41 15.16 11.56 10.23 11.34
SuperLU DIST 101.68 58.25 32.53 21.83 17.06 f f f
speedup ratio (MT/ DIST) 1.00 1.12 1.18 1.46 2.01

twotone SuperLU MT 113.12 60.09 31.50 17.18 11.17 8.17 7.26 7.90
SuperLU DIST 135.43 78.44 46.64 30.01 18.49 f f f
speedup ratio (MT/ DIST) 1.00 1.08 1.19 1.38 1.26

We now evaluate performance of the parallel triangular solution algorithm in
SuperLU DIST. We compare the eight-core Clovertown with the eight-processor
Power5 SMP node. The parallel runtimes are tabulated in Table 8. The columns
labeled “Current” correspond to the current implementation, and the columns
labeled “Improved” refer to the new implementation as a result of this study.

It is very disapointing that on the Clovertown, the current code runs much
more slower with more cores involved. A similar trend was also observed on
the VictoriaFalls. After we profiled various parts of the code, we found that the
slowdown is due to many calls of MPI Reduce; in fact, on eight cores, MPI Reduce

can take over 75% of the time. Consider one block row of the L matrix, as circled
in Figure 4, the diagonal process 0 needs to know which off-diagonal processes
(1 and 2) will have sum contributions to be sent to process 0. To compute this
count, every process holds a 0/1 flag depending whether this process has nonzero
blocks. Then, all the processes in each process row perform an MPI Reduce (by
SUM) over the flags, with diagonal process being the root. Overall, each block
row corresponds to one such reduction operation.

The improvement we have made is the following. Instead of performing many
reductions with one integer, we allocate a flag array of integers, the size of which
is the number of block rows owned by each process. Each entry is the flag asso-
ciated with one block row. Then all the processes in the respective process row

perform only one reduction operation on this flag array. This has greatly reduced
the memory or communication latency cost. On eight-core Clovertown, the im-
provement is significant, ranging from 6- to 9-fold. Even on the conventional SMP
node, such as eight-CPU Power5, we also obtained restpectable improvement,
from 63% to 84%.

Note that the Clovertown time still does not scale as well as the Power5 time.
Further investigation is needed in the future.

Table 8. SuperLU DIST triangular solution time in seconds on Intel Clovertown and
IBM Power5.

Current Improved

matrix tasks 1 2 4 8 1 2 4 8

g7jac200 Clovertown 0.39 0.79 0.76 2.94 0.30 0.28 0.29 0.44
Power5 0.61 0.68 0.46 0.39 0.43 0.39 0.28 0.22

stomach Clovertown 0.93 1.21 3.79 6.74 0.77 0.74 0.53 0.90
Power5 1.24 1.29 0.86 0.75 0.92 0.77 0.59 0.46

torso1 Clovertown 0.28 0.52 1.98 3.22 0.21 0.29 0.32 0.45
Power5 0.31 0.41 0.27 0.24 0.22 0.24 0.18 0.13

twotone Clovertown 0.46 1.51 4.42 7.52 0.32 0.44 0.47 0.80
Power5 0.71 0.97 0.69 0.58 0.44 0.52 0.44 0.34

5 Final remarks

We performed preliminary study of the SuperLU sparse direct solvers on rep-
resentative multicore achitectures. Using the performance analysis tools such
as PAPI and CrayPat, we gave quantitative measures of both static and tem-
poral memory access bahavior. We found that the left-looking factorization in-
curs much less memory traffic than the right-looking one, therefore, it performs
better on the CMP systems with limited memory bandwidth. We believe this
performance characteristics is very likely associated with the other right-looking
algorithm variants, such as a multifrontal algorithm. We also quantified that
the arithmetic density of the triangular solution algorithm can be over an order
of magnitude lower than the preprocessing and factorization algorithms. The
Pthreads code is usually more robust and delivers consistently better perfor-
mance than the MPI code, particularly on a multicore+multithreading architec-
ture, such as Sun VictoriaFalls. These suggest that it will be beneficial to use
hybrid programming model, to design hybrid algorithms, and to provide hybrid
device mode for MPICH.

In the future, we plan to continue using the performance tools to refine our
understanding of multicore scaling, and find ways to enhance performance.

Acknowledgments

We used the multicore clusters with the PSI project and the RADlab at UC
Berkeley, and the resources at the National Energy Research Scientific Comput-
ing Center. We are grateful to John Shalf, Rich Vuduc and Sam Williams for
their help in using these machines and understanding the architectural features.

References

1. CrayPatCray Performance Analysis Tools. http://docs.cray.com/books/

S-2376-41/S-2376-41.pdf.
2. Timothy A. Davis. University of Florida Sparse Matrix Collection. http://www.

cise.ufl.edu/research/sparse/matrices.
3. James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel

supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Analysis
and Applications, 20(4):915–952, 1999.

4. James W. Demmel, John R. Gilbert, and Xiaoye S. Li. SuperLU Users’ Guide.
Technical Report LBNL-44289, Lawrence Berkeley National Laboratory, Septem-
ber 1999. http://crd.lbl.gov/~xiaoye/SuperLU/. Last update: September 2007.

5. Iain S. Duff and Jacko Koster. On algorithms for permuting large entries to the
diagonal of a sparse matrix. SIAM J. Matrix Analysis and Applications, 22(4):973–
996, 2001.

6. Xiaoye S. Li. Sparse Gaussian elimination on high performance computers. Techni-
cal Report UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, Septem-
ber 1996. Ph.D dissertation.

7. Xiaoye S. Li. An overview of SuperLU: Algorithms, implementation, and user
interface. ACM Trans. Mathematical Software, 31(3):302–325, September 2005.

8. Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM Trans. Mathe-
matical Software, 29(2):110–140, June 2003.

9. MPICH - A Portable Implementation of MPI. http://www-unix.mcs.anl.gov/

mpi/mpich1/.
10. PAPI - Performance Application Programming Interface. http://icl.cs.utk.

edu/papi/.
11. Stephen Phillips. Victoriafalls: Scaling highly-threaded processor cores. In HOT

CHIPS 19: A Symposium on High Performance Chips, Stanford, California, August
19-21, 2007.

12. John Shalf. Private communications.
13. Samuel Williams. Private communications.
14. Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and

James Demmel. Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In Supercomputing (SC), Reno, California, November 10-16,
2007.

